

WFB-8206 微机充电保护测控装置 技术及使用说明书

许继电气股份有限公司 XJ ELECTRIC CO., LTD.

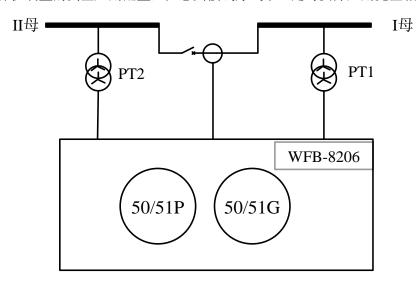
许继电气股份有限公司 XJ ELECTRIC CO.,LTD

地址:河南省许昌市许继大道 1298 号/邮编: 461000/网址: www.xjgc.com

订货咨询: 0374-7591860/13782350756

询价邮箱: ZDDQ0374@163.com

目 录


1 根	私述	
1.1	应用范围	1
1.2	产品特点	1
1.3	功能配置	2
2 技	5术参数	
2. 1	基本电气参数	3
2.2	功率消耗	3
2.3	过载能力	3
2.4	触点性能	3
2.5	绝缘性能	3
2.6	冲击电压	4
2.7	机械性能	4
2.8	环境条件	4
2.9	电磁兼容能力	4
3 侈	R护主要技术指标	5
3. 1	两段充电保护	5
3 . 2	三段过流保护	5
3.3	三段零序过流保护	5
3.4	复合电压保护	
3.5	返回值及返回系数	6
3.6	测量元件及精度	6
3.7	通讯及对时	6
3.8	记录容量	6
4 装	是置功能	7
4. 1	两段充电保护	7
4.2	三段过流保护	
4.3	三段零序过流保护	9
4.4	复合电压	
4.5	断路器状态监测功能	
4.6	PT 异常告警	
4.7	控制回路异常告警	15
4.8	弹簧未储能告警	15
4.9	跳位异常告警	15
	事故总信号	
	装置故障告警	
	遥测、遥信及遥控功能	
	長置硬件介绍	
	结构与安装	
	主要插件	
	装置跳线说明	
5.4	装置端子定义	
5.5	典型接线	
	『値	
6. 1	WFB-8206 定值单	
	定值整定说明	
		
	液晶显示说明	
7.2	指示灯说明	
7.3	调试接口和键盘说明	33

7.4	命令菜单	
7.5		
8 3	装置调试大纲	46
8.1	调试注意事项	46
8.2	程序及硬件检查	
8.3	开关量输入检查	46
8.4	开出回路检查	46
8.5	模拟量输入检查	
8.6	整组试验	47
8.7	输出接点检查	
8.8	装置试验菜单的说明	47
8.9	装置异常信息说明及处理意见	48
8.10	0 事故分析注意事项	48
9 ì	订货须知	49

1 概述

1.1 应用范围

WFB-8206 微机充电保护装置主要适用于 110kV 及以下电压等级的母联(分段)保护及测控。 下图为此型保护装置的典型应用配置,注意其接线方式不一定与实际应用完全相符。

50/51P: 过流保护 (包括二段充电过流 和三段过流) 50/51G: 零序过流保护 (包括二段充电零序过 流和三段零序过流)

图 1-1 WFB-8206 装置典型应用图

1.2 产品特点

● 高性能的通用型硬件,实时计算

32 位高性能的 ARM 处理器,采用 SoC 解决方案,数据处理、逻辑运算和信息储存能力强,运行速度快,可靠性高。高性能的硬件保证了装置在每一个采样间隔对所有继电器进行实时计算。采用内部高速总线和智能 I/O,装置硬件配置灵活,具有通用、易于扩展、易于维护的特点。

● 软件模块化设计

装置提供完备的保护、测控功能,各保护元件按模块化设计,相互独立,可灵活配置。

● 强电磁兼容性及抗干扰能力

整体面板、全封闭机箱,强弱电严格分开,取消传统背板配线方式,同时软件设计采用数字滤波技术和先进的保护算法及其它抗干扰措施,装置的抗干扰能力大大提高,对外的电磁辐射也满足相关标准。

● 灵活强大的通信功能

配有 3 个以太网接口, 2 个 RS-485 串口(其中 1 路可复用为 RS232 打印串口)。既支持 RS485 串行通信模式也支持以太网通信模式;通信规约支持 DL/T667-1999(IEC-60870-5-103)、Modbus 规约,可灵活实现与自动化系统通信。

● 可选多种对时方式

灵活支持网络对时、B 码对时和 GPS 脉冲对时, 保证装置具有统一、准确的时钟。

● 跳闸方式在线修改

各保护的跳闸方式用户可以自己整定,无须再修改保护二次回路接线,跳闸触点可直接接入断路器跳闸回路。

● 调试维护方便

具有友好的人机接口,全中文类菜单模式,结构清晰,使用方便,具备方便的现场装置测试功能。具有完善的软硬件自检功能和免调节电路设计,使调试更简单、方便。

● 完善的事件记录功能

可记录 100 次故障及动作报告, 8 次故障波形, 100 次自检报告及 100 次变位报告。

● 保护与测控一体化

单台装置完成间隔主要保护、测控功能。具有完整的断路器操作回路,设置断路器遥控功能。操作回路配置灵活,可以适应各种操作机构。

- 独立的断路器监测功能
 - 为断路器的状态检修提供可靠依据。
- 装置输入电源交直流通用,现场适应能力强。

1.3 功能配置

装置具体功能配置详见表 1-1。

WFB-8206/R1 两段充电保护 1. $\sqrt{}$ 保 三段相过流保护 $\sqrt{}$ 2. 护 3. 三段零序过流保护 $\sqrt{}$ 功 $\sqrt{}$ 4. 复合电压保护 能 断路器状态监测 5. √* Ⅰ、Ⅱ母 PT 异常检测 $\sqrt{}$ 6. 7. TWJ 异常告警 $\sqrt{}$ 辅助功能 弹簧未储能告警 $\sqrt{}$ 8. 9. 控制回路异常告警 $\sqrt{}$ $\sqrt{}$ 10. 事故总信号 遥信数据上送 11. $\sqrt{}$ 测控功能 12. 正常断路器遥控分合 模拟量的遥测数据上送 13.

表 1-1 WFB-8206 装置功能配置表

注: 1)"√*" 表示该功能为选配项目。如果需要该功能,需在订货时向供应商说明。

2 技术参数

2.1 基本电气参数

2.1.1 额定交流数据

◆ 交流电压: 相电压100/√3 V, 100V;

◆ 交流电流: 5 A/1A;◆ 额定频率: 50 Hz。

2.1.2 额定直流数据

◆ 额定电源电压: DC220 V 或 DC110 V , 允许变化范围: 80%~115%。

2.2 功率消耗

◆ 交流电流回路: 当额定电流为 5A 时,每相不大于 1VA; 当额定电流为 1A 时,每相不大于 0.5 VA; 零序电流回路不大于 0.3 VA;

- ◆ 测量交流电流回路:每相不大于 0.75 VA;
- ◆ 交流电压回路: 每相不大于 0.5 VA;
- ◆ 直流回路:正常运行时,不大于12W;保护动作时,不大于15W。

2.3 过载能力

◇ 交流电流电路: 2倍额定电流,长期连续工作;

10 倍额定电流, 允许 10 s;

50 倍额定电流, 允许 1 s;

◆ 交流电压电路: 1.4 倍额定电压,长期连续工作;

2.0 倍额定电压, 允许 10 s。

2.4 触点性能

- ◆ 回路跳闸触点在电压不超过 250 V,电流不超过 1 A,时间常数为(5±0.75)ms 的直流有 感负荷电路中,装置输出触点的断开容量为 50 W,长期允许通过直流电流不大于 5 A;
- ◆ 其它触点在电压不超过 250 V,电流不超过 0.5 A,时间常数为 (5±0.75) ms 的直流有感 负荷电路中,装置输出触点的断开容量为 30 W,长期允许通过电流不大于 3 A;
- ◆ 输出触点电路在上面 2 条规定的负荷条件下,装置能可靠动作及返回 1000 次:
- ◆ 在输出触点不接负荷的情况下,装置能可靠动作及返回 10000 次。

2.5 绝缘性能

◆ 绝缘电阻

装置所有电路与外壳之间的绝缘电阻在标准试验条件下,不小于 $100~\mathrm{M}\Omega$ 。

◆ 介质强度

装置的额定绝缘电压小于 60 V 的通信接口电路与外壳的介质强度能耐受交流 50 Hz, 电压

500 V(有效值), 历时 1 min 试验, 其它电路与外壳的介质强度能耐受交流 50 Hz, 电压 2 kV(有效值), 历时 1 min 试验, 而无绝缘击穿或闪络现象。

2.6 冲击电压

装置的额定绝缘电压小于 60 V 的通信接口电路与外壳对地,能承受 1kV(峰值)的标准雷电波冲击检验;其各带电的导电端子分别对地,交流回路和直流回路之间,交流电流回路和交流电压回路之间,能承受 5kV(峰值)的标准雷电波冲击检验。

2.7 机械性能

- ◆ 振动响应:装置能承受 GB/T 11287-2000 中 4.2.1 规定的严酷等级为 I 级振动响应检验。
- ◆ 冲击响应:装置能承受 GB/T 14537-1993 中 4.2.1 规定的严酷等级为 I 级冲击响应检验。
- ◆ 振动耐久:装置能承受 GB/T 11287-2000 中 4.2.2 规定的严酷等级为 I 级振动耐久检验。
- ◇ 冲击耐久:装置能承受 GB/T 14537-1993 中 4.2.2 规定的严酷等级为 I 级冲击耐久检验。
- ◆ 碰撞:装置能承受 GB/T 14537-1993 中 4.3 规定的严酷等级为 I 级碰撞检验。

2.8 环境条件

- **◇** 工作温度: -25 ℃~+55 ℃。
- ◆ 贮存温度: -25 $^{\circ}$ $^{\circ}$ ~ +55 $^{\circ}$, 在极限值下不施加激励量,装置不出现不可逆变化,温度恢复后,装置应能正常工作。
- ◆ 运输温度: -40 ℃~+70 ℃,在极限值下不施加激励量,装置不出现不可逆变化的损坏。
- ◆ 相对湿度: 5%~95%(产品内部既无凝露、也无结冰)。

2.9 电磁兼容能力

- ◆ 慢速阻尼振荡波(1 MHz 及 100 kHz 脉冲群)抗扰度:能承受 GB/T 14598.26-2015 中 6.2、6.3、6.4 规定的慢速阻尼振荡波抗扰度试验;
- ◆ 静电放电抗扰度:能承受 GB/T 14598.26-2015 中 6.1 规定的静电放电抗扰度试验;
- ◆ 辐射射频电磁场抗扰度: 能承受 GB/T 14598.26-2015 中 6.1 规定的辐射射频电磁场抗扰度 试验;
- ◆ 快速瞬变抗扰度: 能承受 GB/T 14598.26-2015 中 6.2、6.3、6.4、6.5 规定的 A 类快速瞬变 抗扰度试验;
- ◆ 浪涌抗扰度: 能承受 GB/T 14598.26-2015 中 6.2、6.3、6.4 规定的 A 类浪涌抗扰度试验;
- ◆ 射频场感应的传导骚扰的抗扰度:能承受 GB/T 14598.26-2015 中 6.2、6.3、6.4、6.5 规定的射频场感应的传导骚扰的抗扰度试验;
- ◆ 工频抗扰度: 能承受 GB/T 14598.26-2015 中 6.4 规定的 A 类工频抗扰度试验;
- ◆ 工频磁场抗扰度:能承受 GB/T 14598.26-2015 中 6.1 规定的工频磁场抗扰度试验;

- ◆ 脉冲磁场抗扰度: 能承受 GB/T 17626.9-2011 中第 5 章规定的严酷等级为 4 级的脉冲磁场抗 扰度试验;
- ◆ 阻尼振荡磁场抗扰度: 能承受 GB/T 17626.10-1998 中第 5 章规定的严酷等级为 4 级的阻尼振荡磁场抗扰度试验;
- ◆ 电磁发射试验: 符合 GB/T 14598.26-2015 中 5.1 规定的辐射发射限值和 5.2 规定的传导发射限值;
- ◆ 辅助电源端口的电压暂降、短时中断、纹波、缓降/缓升试验:符合 GB/T 14598.26-2015 中 6.2 规定的电压暂降、电压中断、直流中交流分量(纹波)、缓降/缓升、极性反接试验严酷等级和试验要求。

3 保护主要技术指标

注: 以下指标中 In 指 CT 二次侧额定电流。

3.1 两段充电保护

- ◆ 充电过流 I 段电流整定范围: 0.4In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 充电零流 I 段电流整定范围: 0.1In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 充电 I 段延时整定范围: 0.05s-100s;
- ◆ 充电 I 段投入时间整定范围: 2.00s-30.00s;
- ◆ 充电过流 II 段电流整定范围: 0.1In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 充电零流 II 段电流整定范围: 0.1In -20In, 误差不超过±2.5%或±0.01In:
- ◆ 充电Ⅱ段延时整定范围: 0.1s-100s:
- ◆ 充电Ⅱ段投入时间整定范围: 2.00s-30.00s。

3.2 三段过流保护

- ◆ 过流 I 段电流整定范围: 0.4In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 过流 I 段延时整定范围: 0s-100s:
- → 过流Ⅱ段电流整定范围: 0.1In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 过流Ⅱ段延时整定范围: 0.1s-100s;
- ◆ 过流Ⅲ段电流整定范围: 0.1In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 过流Ⅲ段延时整定范围: 0.1s-100s。

3.3 三段零序过流保护

- ◆ 零流 I 段电流整定范围: 0.4In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 零流 I 段延时整定范围: 0s-100s;
- ◆ 零流 II 段电流整定范围: 0.1In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 零流Ⅱ段延时整定范围: 0.1s-100s:
- ◆ 零流III段电流整定范围: 0.1In -20In, 误差不超过±2.5%或±0.01In;
- ◆ 零流Ⅲ段延时整定范围: 0.1s-100s。

3.4 复合电压保护

- ◆ 低压闭锁定值: 50.0~100.0V, 误差不超过整定值的±2.5%或±0.5V;
- ◆ 负压闭锁定值: 2.0~30.0V, 误差不超过整定值的±2.5%±0.5V。

3.5 返回值及返回系数

- ♦ 对过量保护返回系数不小于 0.9;
- ◆ 对欠量保护返回系数不大于 1.1。

说明:如无特殊说明,所有延时误差的测定条件为过量保护施加 1.2 倍定值,欠量保护施加 0.8 倍动作值进行测试,误差均为不超过±2.0%或±40ms。

3.6 测量元件及精度

- ◆ 模拟量
- a) 电流、电压测量误差不超过±0.2%;
- b) 功率测量误差不超过±0.5%;
- c) 频率测量误差不超过±0.01 Hz。
- ◆ 状态量
- a) 采集方式: DC 220V 或者 DC 110V 输入, 光电隔离;
- b) 装置事件顺序记录分辨率: 不大于 1 ms。

3.7 通讯及对时

◆ 通讯配置:

2个 RS-485 通讯口(其中一个可以设置为 RS232 打印口)和 3个以太网口通讯口(第一个以太网口具备调试口功能,其余两个仅用作通讯口);

♦ 通讯规约:

通信规约支持 DL/T667-1999 (IEC-60870-5-103)、Modbus 规约,可灵活实现与自动化系统通信。

◆ 对时方式: 支持两种对时方式 方式 1: 网络+脉冲

方式 2: B 码对时

◆ 调试接口:装置前面板设有 RS232 串口调试口。

3.8 记录容量

◆ 故障录波内容和故障报告容量 保护装置可循环记录不少于 100 次故障报告、8 次故障录波。

◆ 正常波形记录容量

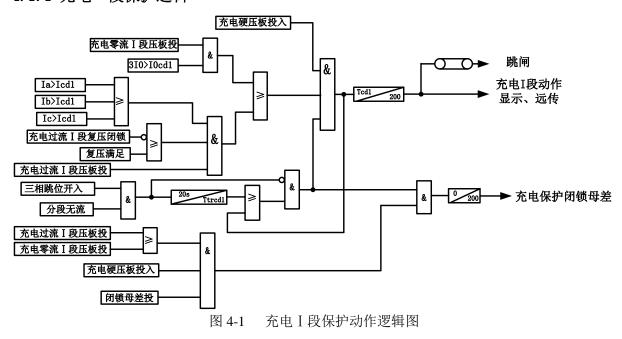
正常时保护可记录故障前 4 个周波,故障后 6 个周波共 10 个周波的所有电流电压波形,以供记录或校验极性。

◆ 事件记录容量

可循环记录 100 次事件记录和装置自检报告。事件记录包括软压板投退、开关量变位等; 装置自检报告包括硬件自检出错报警等。

4 装置功能

4.1 两段充电保护


在投入分段(母联)开关时,断路器跳位消失,充电保护短时间(可整定)开放,合于故障,则充电保护经延时动作跳闸。

充电保护含相过流和零序过流两部分,两者或门出口,可以通过控制字分别控制投退。相过流保护由两段相过流组成,在投入条件满足后,计算三相电流,任一相电流大于定值则经相应段延时出口跳闸;零序过流保护由两段零序过流组成,在投入条件满足后,计算零序电流,大于定值则经相应段延时出口跳闸。过流部分具有复压闭锁功能。

充电保护投入条件: 充电保护压板(软、硬压板)投入,断路器三相在跳闸位置且无流 20s 后,断路器由分到合。如果电流不大于定值则经短时间(充电保护投入时间定值)自动退出充电状态。如果在充电保护投入期间发生故障跳开了分段开关,则在充电投入期间再次合闸时,不再需要 20s 的投入确认时间。

在有些应用场合可能要求与母差保护配合,当充电保护投入时闭锁母差保护,因此在充电 I 段投入期间根据"充电闭锁母差"控制字的投退来控制输出充电闭锁母差接点。需要注意的是,由于软件判别及继电器动作输出的固有时间,闭锁接点的输出存在一定的时延,所以如果母差保护动作不带延时的话,两者的配合存在困难。因此工程应用中如果母差保护动作无延时又要求母联充电时短时闭锁母差的话,建议用充电手合接点来闭锁母差保护。

4.1.1 充电一段保护逻辑

4.1.2 相关设置

1) 软压板

序号	名称	范围	说明	备注
1.	充电过流 I 段压板	0~1	0: 退出 1: 投入	
2.	充电零流 I 段压板	0~1	0: 退出 1: 投入	

2) 控制字

序号	名称	代号	范围	说明
1.	充电I段复压闭锁	CDGL1FYBS	0~1	1: 投入 0: 退出
2.	充电闭锁母差	BSMC	0~1	1: 投入 0: 退出

3) 保护定值

序号	名称	代号	范围	步长	缺省值	说明	备注
1.	充电过流 I 段定值	Icd1	0.4In~20In	0.01	20In A		
2.	充电零流 I 段定值	I0cd1	0.1In~20In	0.01	20In A		
3.	充电 I 段延时	Tcd1	0.05s-100s	0.01s	100s		
4.	充电I段投入时间	Ttrcd1	2.00s-30.00s	0.01s	2s		

4.1.3 充电二段保护逻辑

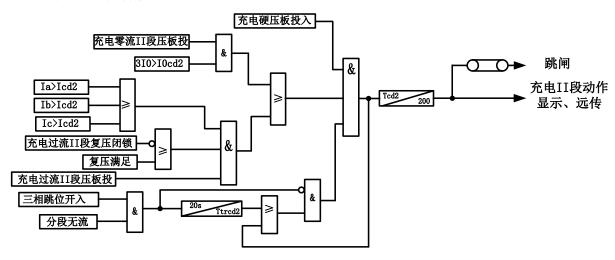


图 4-2 充电 II 段保护动作逻辑图

4.1.4 相关设置

1) 软压板

序号	名称	范围	说明	备注
1.	充电过流Ⅱ段压板	0~1	0: 退出 1: 投入	
2.	充电零流Ⅱ段压板	0~1	0: 退出 1: 投入	

2) 控制字

序号	名称	代号	范围	说明
1.	充电Ⅱ段复压闭锁	CDGL2FYBS	0~1	1: 投入 0: 退出

3) 保护定值

序号	名称	代号	范围	步长	缺省值	说明	备注
1.	充电过流Ⅱ段定值	Icd2	0.1In -20In	0.01A	20In A		
2.	充电零流Ⅱ段定值	I0cd2	0.1In -20In	0.01A	20In A		
3.	充电Ⅱ段延时	Tcd2	0.1s-100s	0.01s	100s		

-							
	4.	充电Ⅱ段投入时间	Ttrcd2	2.00s-30.00s	0.01s	2s	

4.2 三段过流保护

装置设置了三段式相过流保护,做为分段(母联)开关处于并列运行时相间故障的保护。可长期投入,在运行上其定值需躲过充电时的冲击电流,如果不能躲过,则在充电时可以通过退出过流压板来退出过流保护。过流保护具有复压闭锁功能。原理框图如图 4-3 所示。

4.2.1 三段过流保护逻辑

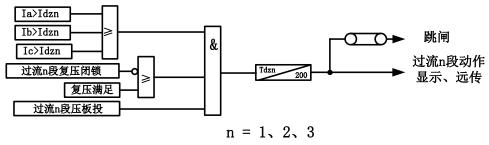


图 4-3 过流保护动作逻辑图

4.2.2 相关设置

1) 软压板

序号	名称	范围	说明	备注
1.	过流 I 段压板	0∼1	0: 退出 1: 投入	
2.	过流Ⅱ段压板	0~1	0: 退出 1: 投入	
3.	过流III段压板	0~1	0: 退出 1: 投入	

2)控制字

序号	名称	代号	范围	说明
1.	过流Ⅰ段复压闭锁	CDGL1FYBS	0∼1	1: 投入 0: 退出
2.	过流Ⅱ段复压闭锁	CDGL2FYBS	0~1	1: 投入 0: 退出
3.	过流Ⅲ段复压闭锁	CDGL2FYBS	0~1	1: 投入 0: 退出

3) 保护定值

序号	名称	代号	范围	步长	缺省值	说明	备注
1.	过流 I 段定值	Idz1	0.4In~20In	0.01A	20In A		
2.	过流Ⅰ段延时	Tdz1	0s~100s	0.01s	100s		
3.	过流Ⅱ段定值	Idz2	0.1In~20In	0.01A	20In A		
4.	过流Ⅱ段延时	Tdz2	0.1s~100s	0.01s	100s		
5.	过流Ⅲ段定值	Idz3	0.1In~20In	0.01A	20In A		
6.	过流Ⅲ段延时	Tdz3	0.1s~100s	0.01s	100s		

4.3 三段零序过流保护

装置设有三段零序电流保护,做为分段(母联)开关处于并列运行时接地故障时的保护。零序电流为自产零序,各段零序电流及时间定值可独立整定,分别通过设置保护压板控制这三段保护的投退。其中零流三段设有控制字可以选择动作于跳闸或者告警。原理框图如图 4-4 和 4-5 所示。

4.3.1 零流 I/II 段保护逻辑

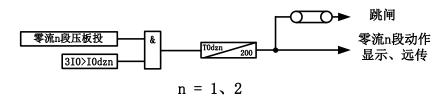
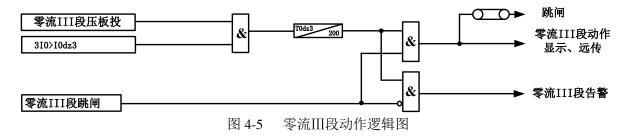


图 4-4 零流 Ⅰ/Ⅱ 段动作逻辑图

4.3.2 相关设置


1) 软压板

序号	名称	范围	说明	备注
1.	零流 I 段压板	0~1	0: 退出 1: 投入	
2.	零流Ⅱ段压板	0~1	0: 退出 1: 投入	

2) 保护定值

序号	名称	代号	范围	步长	缺省值	说明	备注
1.	零流 I 段定值	I0dz1	0.4In~20In	0.01A	20In A		
2.	零流Ⅰ段延时	T0dz1	0s~100s	0.01s	100s		
3.	零流Ⅱ段定值	I0dz2	0.1In~20In	0.01A	20In A		
4.	零流Ⅱ段延时	T0dz2	0.1s~100s	0.01s	100s		

4.3.3 零流Ⅲ段保护逻辑

4.3.4 相关设置

1) 软压板

序号	名称	范围	说明	备注
1.	零流Ⅲ段压板	0~1	0: 退出 1: 投入	

2) 控制字

序号	名称	代号	范围	说明
1.	零流Ⅲ段跳闸	LL3TZ	0~1	1: 投入 0: 退出

3) 保护定值

序 号	名称	代号	范围	步长	缺省值	说明	备注
1.	零流Ⅲ段定值	I0dz3	0.1In~20In	0.01A	20In A		
2.	零流Ⅲ段延时	T0dz3	0.1s~100s	0.01s	100s		

4.4 复合电压

"复压告警投"控制字投入,装置监视两段母线的电压, Ⅰ母线与Ⅱ母线复合电压同时满足条

件则报复合电压告警信号。

复合电压做为闭锁元件闭锁充电保护的过流部分和过流保护。复压闭锁投入情况下, I 母线与 II 母线复合电压同时满足条件则开放充电保护过流部分和过流保护。

"PT异常退复压投"控制字投退说明:

整定为 "1"时,如本段母线发生PT异常,则本段母线复合电压元件自动退出。复合电压只判另一段母线电压。如两段母线均发生PT异常,则复合电压告警元件自动退出,闭锁复压过流保护。

整定为 "0"时,如果 I 母线PT异常或 I I 母线PT异常时,复合电压元件不满足,闭锁复压过流保护。

4.4.1 复压闭锁逻辑

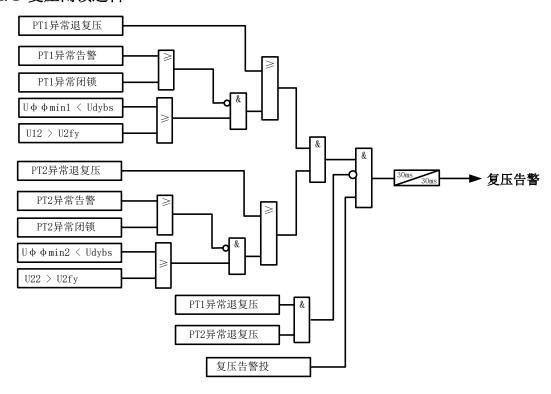
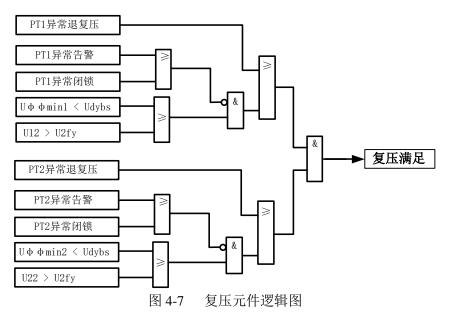



图 4-6 复合电压告警逻辑图

4.4.2 相关设置

1) 控制字

序号	名称	代号	范围	说明
1.	复压告警投		0∼1	1: 投入 0: 退出

2) 保护定值

序号	名称	代号	范围	步长	缺省值	说明	备注
1.	低压闭锁定值	Udybs	50.0~100.0V	0.01V	70V		
2.	负压闭锁定值	U2fy	2.0~30.0V	0.01V	30V		

4.5 断路器状态监测功能

注: 标准配置中无该项保护,可以根据用户需求进行选配。

装置可选择设有断路器状态监测功能,在不影响设备正常运行的情况下,通过机械寿命监测和 电寿命监测的方法对断路器的健康水平进行监视和评估,既可实时了解断路器的运行状态,又可捕 捉故障征兆,及时做出针对性的检修计划,防止事故发生或事故扩大。

4.5.1 机械寿命检测

断路器执行一次由合到分操作时,断路器总操作次数加 1,如果该操作是由保护跳闸引起的,则断路器故障操作次数加 1。当断路器总操作次数大于参数"操作超界次数"的设置值时,驱动告警灯并弹出告警报告"操作次数越限告警"。

参数"操作超界次数"一般根据断路器的机械寿命值设置。

断路器经过检修后用户可通过参数设置菜单设置断路器操作次数初始值及故障操作初始值。

4.5.2 电寿命检测

定义一台全新的断路器的触头允许磨损量为 100%,即相对电寿命为 1。则每次额定开断电流开断时的相对磨损为 1/N,再根据不同断路器的 N-Ib 曲线(电寿命曲线),即可求得任意大小开断电流

对应的允许开断次数 Nm,则 Qm=1/Nm,这样就可求出断路器任一次开断时的相对电磨损量。

$$L = L_0 + \sum Q_m$$

L0 为断路器电寿命的初始值,是一个不大于 1 的百分数,其值由断路器的运行历史决定,新投运的或经过大修后的断路器其值可取为 0;

Qm 断路器任一次开断时的相对电磨损量;

当断路器的任一相累计 L 大于定值"电寿命磨损告警系数"时,装置驱动告警灯并弹出告警报告"电寿命越限告警",提示检修。

对于真空断路器, 任一次相对电磨损量 Qm 可通过下式计算:

$$Q_m = \left(\frac{Q_{n+1} - Q_n}{X_{n+1} - X_n}\right) (X - X_n) + Q_n$$
 其中 n=1,2,3.....

对任一开断电流 I_m ,真空断路器的相对电磨损可根据下表通过线性插值求得。

设 $X = (I_m/I_n)$	100%	75%	50%	35%	25%	10%	3%
允许开断次数	N	2.2 N	5 N	12 N	20 N	140 N	300 N
相对磨损量 Q_m	1/ _N	$\frac{1}{2.2N}$	1/ _{5N}	1/ _{12N}	1/ _{20N}	1/ 140 <i>N</i>	1/300 <i>N</i>

 I_n 为额定开断电流; N 为额定开断次数;

经验表明,当开断电流 $I_m < 0.03I_n$ 时,磨损量相对于满容量开断磨损量很小,故都视为 $0.03I_n$ 来处理。

4.5.3 参数说明

序号	名称	简称	范围	步长	缺省值	说明	备注
1	累计控制	LJZK	0~1	1	1		
2	操作次数初始值	JSCZ	0~50000	1	0		
3	故障操作初始值	GZCZ	0~50000	1	0		
4	电寿命磨损初值 A	DSMA	0~100	0.01	0		
5	电寿命磨损初值 B	DSMB	0~100	0.01	0		额定的百分数
6	电寿命磨损初值 C	DSMC	0~100	0.01	0		
7	操作超界次数	CJCS	100~50000	1	50000		
8	额定开断电流	EDKDI	0~100	0.01	100		
9	额定开断次数	EDKDN	1~1000	1	1000		
10	电寿命告警系数	GJXS	0~100	0.01	100		

累计控制:一般情况下整定为1。

⚠ 操作次数初始值、故障操作初始值、电寿命磨损初值 A、电寿命磨损初值 B、电寿命磨损初值 C 应根据实际情况估计初始值,如初次投运或大修后可设置为零。

♪ 考虑到现场设备运行状况,如用户在设备检修后需要重新设置磨损初值及断路器操作次数,需在"累计控制"状态为"1"时对"操作次数初始值"、"故障操作初始值"、"电寿命磨损初值 A"、"电寿命磨损初值 B"、"电寿命磨损初值 C"参数进行设置,完成设置后将"累计控制"设置为 0 并按确定键保存,此时装置之前的积累值才能被新整定的初值所替代。

4.6 PT 异常告警

- ◆ 母线 PT 异常:
- 1) 负序电压大于 6V;
- 2) 正序电压小于 30V。

满足以上任一条件, "PT 异常投"控制字投入同时过流保护没有启动,则 PT 异常启动,10s 后报母线 PT 异常。不满足以上情况,母线 PT 异常延时 10s 返回。如果"PT 异常退复压投退"控制字投入则当 PT 异常时退出相应母线复合电压。PT 异常分母线判别。原理框图如图 4-8 和 4-9 所示。

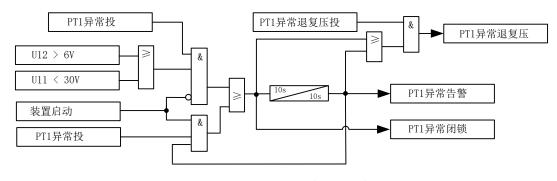


图 4-8 I 母 PT 异常检测原理框图

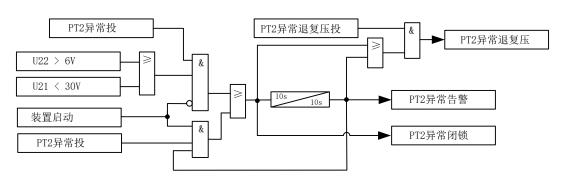


图 4-9 II 母 PT 异常检测原理框图

4.6.1 相关设置

序号	名称	代号	范围	说明
1.	PT1 异常投		0~1	1: 投入 0: 退出
2.	PT2 异常投		0~1	1: 投入 0: 退出
3.	PT1 异常退复压投		0~1	1: 投入 0: 退出

4.	PT2 异常退复压投	0∼1	1: 投入 0: 退出

4.7 控制回路异常告警

装置采集断路器的跳位和合位状态,当电源正常、断路器位置辅助接点正常时,必然有一个跳位或合位,否则,经 2s 报"控制回路异常"告警信号。

4.7.1 相关设置

1)控制字

序号	名称	范围	说明
1.	控制回路检测投	0∼1	

4.8 弹簧未储能告警

装置设有弹簧未储能开入(常闭接点),装置收到开入后经整定延时报弹簧未储能告警信号并闭锁遥控合闸。

4.8.1 相关设置

1) 保护定值

序号	名称	代号	范围	步长	缺省值	说明	备注
1.	弹簧未储能延时	Tthwcn	1s∼100s	0.01	100s		

4.9 跳位异常告警

装置采集断路器的跳位和合位,当断路器处于跳闸位置时如果任一相有电流,则经 10s 延时报"跳位异常"告警。

4.10 事故总信号

装置采集 HHJ(合后开入)、TWJ(跳位开入),当 HHJ和 TWJ同时为1时,延时0.2s(防止遥控或手动合闸过程中可能存在位置不对应情况)发出事故总信号并保持3s。

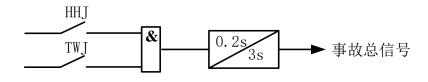


图 4-10 事故总原理框图

4.11 装置故障告警

保护装置的硬件发生故障(包括定值出错,定值区号出错,开出回路出错,通信设置出错,出口配置出错,装置参数出错),装置的 LCD 显示故障信息,并闭锁保护。

4.12 遥测、遥信及遥控功能

遥测: 测量 Ia、Ib、Ic、Ua1、Ub1、Uc1、Uab1、Ubc1、Uca1、P、Q、f1、S、COS¢, Ua2、Ub2、Uc2、Uab2、Ubc2、Uca2、f2;

遥信: 各种保护动作信号及断路器位置遥信、开入遥信等;

遥控:远方控制跳、合闸,压板投退、修改定值等。

5 装置硬件介绍

装置采用加强型单元机箱,按抗强振动、强干扰设计;确保装置安装于条件恶劣的现场时仍具备高可靠性。不论组屏或分散安装均不需加设交、直流输入抗干扰模块。面板上包括液晶显示器、信号指示灯、操作键盘、RS-232 调试通信口等。

5.1 结构与安装

机箱采用 6U、19/3 英寸机箱,嵌入式安装方式。可以组屏安装,也可就地安装到开关柜。装置的外形尺寸如图 5-1 所示、安装开孔尺寸如图 5-2 所示、背视图如图 5-3 所示。

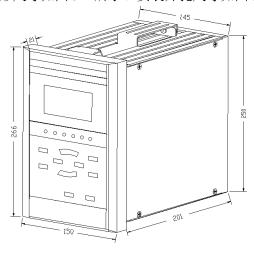
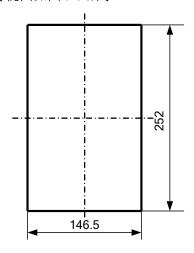



图 5-1 装置机箱外形尺寸图

5-2 装置机箱安装尺寸

5	4	3	2	1	
信号插件	空面板	开入插件	CPU 插 件	交流插件 (含电源)	

图 5-3 装置背视图

5.2 主要插件

本装置由以下插件构成:交流插件(含电源)、CPU 插件、开入插件、空插件、信号插件以及 人机对话面板插件。

5.2.1 交流插件(含电源)

交流变换部分包括电流变换器 CT 和电压变换器 PT,用于将系统 CT、PT 的二次侧电流、电压信号转换为弱电信号,供 CPU 插件转换,并起强弱电隔离作用。

插件包括 9 个电流变换器 CT 和 6 个电压变换器 PT。9 个 CT 分别变换 CIa、CIb、CIc、IA、IB、IC、I7、I8、I9 9 个电流量,2 组 PT 分别为 I 、 II 母三相电压,UA1、UB1、UC1、UA2、UB2、UC2 等 6 个电压量。

UA1、UB1、UC1 为母线电压,在本装置中作为保护和测量共用,其与 CIa、CIb、CIc 一起计算形成本线路的 P、Q、COSφ、kWh、kVarh。

若现场无相应的母线 PT 或者本装置所使用的功能不涉及电压,则 Ua、Ub、Uc 可不引入。为 防止装置误发 PT 断线信号,需将保护定值中"PT 异常投"控制字退出。

电源模块为直流逆变电源。直流 220 V 或 110 V 电压输入经抗干扰滤波回路后,利用逆变原理输出本装置需要的 5 V 电源。插件具有失电告警和装置故障告警接点。

交流插件(含电源)的端子定义如下图所示。

	交流	流插件	(含电	源)				
X01	IN+	电源正		ON				
X02	IN-	电源负		1				
XO3 GNDEXT 屏蔽地			电源 0					
X04	GJCK1	告警出口		OFF				
X05	GJCK2	告警出口	J	011				
交流变换								
CI	A1	01	02	CIA1'				
CI	B1	03	04	CIB1'				
CI	.C1	05	06	CIC1'				
I4	I(IA)	07	08	I4'(IA')				
15	(IB)	09	10	I5'(IB')				
16	(IC)	11	12	I6'(IC')				
17	,	13	14	17'				
18	3	15	16	18'				
19)	17	18	19'				
UA	12	19	20	UB2				
UC	2	21	22	UN2				
UA	11	23	24	UB1				
UC1 2			26	UN1				
		\rightarrow						

端子号	符号	描述
X01	IN+	保护电源正极性端
X02	IN-	保护电源负极性端
X03	GNDEXT	保护电源接地端
X04	GJCK1	生中生数和牡果只要拉上
X05	GJCK2	失电告警和装置异常接点
1	CIA1	A相测量电流极性端
2	CIA1'	A相测量电流N端
3	CIB1	B相测量电流极性端
4	CIB1'	B相测量电流N端
5	CIC1	C相测量电流极性端
6	CIC1'	C相测量电流N端
7	I4 (IA)	A相保护电流极性端
8	I4'(IA')	A相保护电流N端
9	I5 (IB)	B相保护电流极性端
10	I5'(IB')	B相保护电流N端
11	I6(IC)	C相保护电流极性端
12	I6'(IC')	C相保护电流N端
13	17	
14	17'	
15	18	
16	18'	
17	19	
18	19'	
19	UA2	II母A相电压
20	UB2	II母B相电压
21	UC2	II母C相电压
22	UN2	II母电压N端
23	UA1	I母A相电压
24	UB1	I母B相电压
25	UC1	I母C相电压
26	UN1	I母电压N端
27		
28		

注: NJL-873/3 表示交流插件电流为 5A 规格, NJL-873/4 表示交流插件电流为 1A 规格。

图 5-4 交流插件(含电源)端子定义

5.2.2 CPU 插件

CPU 插件采用 32 位高性能的 ARM 处理器,采用 SoC 解决方案,数据处理、逻辑运算和信息储存能力强,运行速度快,可靠性高。主要完成模拟量数据采集、保护逻辑计算和跳闸出口、对整个装置的管理、人机界面、通讯和录波等功能。

插件配有 3 路以太网接口、2 路 RS-485 外部通信接口(其中 1 路可复用为 RS232 打印串口)、 PPS 硬脉冲或 IRIG-B 差分对时接口。

插件采用多层印制板和表面贴装工艺,采取了多种抗干扰措施,大大提高了抗干扰性能。 CPU 插件的端子定义如下图所示。

	NPU-	858						
	CPU指	盾件						
01	01 485+ TXD							
02	485-	RXD	串口 1/打 印口					
03								
04	48	85+	串					
05	48	85-	П					
06	0	V	2					
07		+ (B)	B码					
08	GPS	-(B)	对时					
09	GPS	+ (P)	脉冲					
10	GPS	-(P)	对时					
	ETH1		以					
			太网口1					
	ETH2							
	ЕТНЗ							

端子号	符号	描述					
1	485+	第一组RS485通讯口、可复用为					
2	485-	第一组NS405地似口、可复用为 RS232打印口					
3	OV	K252511 № □					
4	485+						
5	485-	第二组RS485通讯口					
6	OV						
7	GPS+(B)	B码对时接口					
8	GPS-(B)	可问对可按口					
9	GPS+(P)	 接24V有源脉冲对时接点					
10	GPS-(P)	按24V有源脉/PXI的接点					

图 5-5 CPU 插件端子定义

5.2.3 开入插件

本插件配置提供 27 路直流 220V/110V 开入及 4 路开出。

注意: 开关量输入额定电压可选为直流 220V 和直流 110V,必须在技术方案和合同中声明。现场投运前必须检查开关量输入模块的额定电压是否满足工程要求。

开入插件的端子定义如下图所示。

1	NKR-825						
J	F入	 香件					
01	Ţ	闭锁母差					
02	ĵ	1307 7.2					
03	Î	別価山口っ					
04	跳闸出口3						
05	Ţ	跳闸出口2					
06	Ĵ	於[[] 田 口 Z					
07	וָ	跳闸出口1					
08	Ĵ	илин ш ш т					
09	弹針	簧未储能					
10	上阝	鬲刀/工作位					
11	下阝	鬲刀/试验位					
12	接地	也刀					
13	遥信	言开入1					
14	遥信	言开入2					
15	遥信开入3						
16	遥信开入4						
17	遥信	言开入5					
18		言开入6					
19	遥信	言开入7					
20	遥信	言开入8					
21	遥信	言开入9					
22	遥信	言开入10					
23	遥信	言开入11					
24	遥信	言开入12					
25	备月	用开入1					
26	备月	用开入2					
27	备月	用开入3					
28		用开入4					
29	备月						
30		用开入6					
31	备用开入7						
32		电硬压板					
33	_	号复归					
34		方/就地					
35	_						
35 检修压板 36 开入公共负							

端子号	符号	描述
1	Ţ	闭锁母差出口
2	Ĵ	内顶马左山口
3	ĺ	跳闸出口3
4	Ĵ	政[[1] 田 田 O
5	į	跳闸出口2
6	Ĵ	William 112
7	ļ	跳闸出口1
8	}	7,51,14
9	弹簧未储能	弹簧未储能开入
10	上隔刀/工作位	上隔刀/工作位开入
11	下隔刀/试验位	下隔刀/试验位开入
12	接地刀	接地刀开入
13	遥信开入1	
14	遥信开入2	
15	遥信开入3	
16	遥信开入4	
17	遥信开入 5	
18	遥信开入6	
19	遥信开入7	
20	遥信开入8	
21	遥信开入9	
22	遥信开入 10	
23	遥信开入 11	
24	遥信开入 12	
25	备用开入1	
26	备用开入 2	
27	备用开入3	
28	备用开入4	
29	备用开入 5	
30	备用开入6	
31	备用开入7	
32	充电硬压板	充电硬压板开入
33	信号复归	信号复归开入
34	远方/就地	远方/就地开入
35	检修压板	检修压板开入
36	开入公共负	开入电源公共负端

图 5-6 开入插件端子定义

5.2.4 信号插件

本插件包括信号部分、备用出口和操作回路。

信号部分主要包括运行异常信号、跳闸信号、合闸信号、控制回路断线信号、事故总信号。 备用出口部分主要包括3个备用出口继电器。

操作回路主要完成跳、合闸及其保持、防跳、位置监视等功能。包括跳闸继电器(BTJ)、合闸继电器(BHJ)、合后继电器(HHJ)、遥跳继电器(YTJ)、遥合继电器(YHJ)、跳闸保持继电器(TBJ)、合闸保持继电器(HBJ)等。适用于弹簧机构断路器和不带压力机构的永磁断路器。回路自带防跳功能,用户可以根据实际工程需要选择是否使用防跳功能。

注:操作回路默认自带防跳功能,若用户不使用本回路的防跳功能时,需将图 5-7 中 P1a 与 P1b 之间的连线剪断。

操作回路原理图如下图所示。

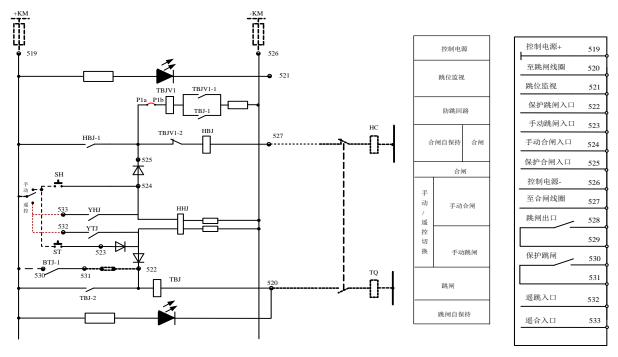


图 5-7 操作回路原理图

● 断路器跳闸位置监视

跳闸位置(TWJ)用于监视断路器的分位状态。把端子 521 和端子 527 短接后连接到合闸回路,可以用来监视断路器的跳闸位置状态。 装置"跳位"指示灯常亮用来指示断路器在跳闸位置状态。

● 断路器合闸位置监视

合闸位置(HWJ)用于监视断路器的合位状态。 把端子 520 连接到跳闸回路,可以用来监视断路器的合闸位置状态。 装置"合位"指示灯常亮用来指示断路器在合闸位置状态。

● 控制回路断线监视

合闸位置(HWJ)的接点和跳闸位置(TWJ)的接点串联起来,用以输出控制回路断线报警信号输出。

● 合闸回路

手动合闸信号从手动合闸入口 524 输入,遥控合闸信号从端子 533 输入。合闸保持继电器(HBJ) 在合闸操作时启动,断路器合闸成功后返回。合闸过程中即使合闸接点返回,合闸保持继电器(HBJ) 常开接点将保持闭合到断路器合闸成功。

● 跳闸回路

保护跳闸信号从端子 530、531 串接跳闸压板后从保护跳闸入口 522 输入,手动跳闸信号从手动跳闸入口 523 输入,遥控跳闸信号从端子 532 输入。跳闸保持继电器 (TBJ) 在跳闸操作时启动,断路器跳闸成功后返回。跳闸过程中即使跳闸接点返回,跳闸保持继电器 (TBJ) 常开接点将保持闭合到断路器跳闸成功。

● 合后位置继电器(HHJ)

合后位置继电器(HHJ)为双位置继电器。当断路器手动合闸或遥控合闸时,HHJ 动作并且保

持;当断路器手动跳闸或遥控跳闸时,HHJ将返回;当由于保护动作跳开断路器时,HHJ不返回。 HHJ的常开接点和TWJ常开接点一起用来作为启动重合闸的条件,即不一致启动重合闸。断路器 在合位的正常状态时,HHJ为1,TWJ为0;当保护动作或开关偷跳时,HHJ为1,TWJ也为1, 此时保护装置启动重合闸。

● 防跳回路

防跳功能的实现是通过跳闸保持继电器(TBJ)和防跳回路继电器(TBJV)共同实现的。保护或人为跳闸时,TBJ 动作,在启动跳闸保持回路的同时,接于 TBJV 线圈回路的 TBJ 常开接点闭合。如果此时有合闸操作(手动合闸或重合闸),则 TBJV 线圈带电,串于其线圈回路的 TBJV 常开接点闭合,构成自保持回路。接于合闸线圈回路的 TBJV 常闭接点打开,切断合闸回路, 避免断路器多次跳合。

信号插件的端子定义如下图所示。

NXH-866						
信号插件						
01	信	号公共端				
02	运	行异常				
03	保	护跳闸信号				
04	保	护合闸信号				
05	控	制回路断线				
06	Ţ	事故总信号				
07	J J	争取心间与				
08	Î	Д Ш П 1				
09	j	备用出口1				
10	Ţ	备用出口2				
11	Ĵ	田川山口2				
12	-	公共端				
13	~ \	备用出口3				
14		备用出口3				
15						
16						
17						
18						
19	控	制电源+				
20	至	跳闸线圈				
21	跳	位监视				
22	保	护跳闸入口				
23	手	动跳闸入口				
24	手	动合闸入口				
25	保	护合闸入口				
26	控	制电源-				
27	至	合闸线圈				
28	Ţ	跳闸出口				
29	ĵ	时出口 口				
30	Ţ	保护跳闸				
31	ĵ					
32	遥	跳				
33	遥	合				
34						
35						
36						

端子号	符号	描述
1	信号公共端	信号公共端
2	运行异常	运行异常信号
3	保护跳闸信号	保护跳闸信号
4	保护合闸信号	保护合闸信号
5	控制回路断线	控制回路断线信号
6	เ้	事故总信号
7	Ì	4 K心口 7
8	ļ	备用出口1
9	Ĵ	ш/пш-1
10	ļ	备用出口2
11	l l	
12	•	备用出口3公共端
13	~~	备用出口3(常开)
14	٦,	备用出口3(常闭)
15		
16		
17		
18		
19	控制电源+	
20	至跳闸线圈	
21	跳位监视	
22	保护跳闸入口	
23	手动跳闸入口	
24	手动合闸入口	
25	保护合闸入口	
26	控制电源-	
27	至合闸线圈	
28	Ţ	跳闸出口
29	ì	(1961년) LLI (I
30	Ţ	保护跳闸
31	ì	
32	遥跳	遥跳入口
33	遥合	遥合入口
34		
35		
36		

图 5-8 信号插件端子定义

5.2.5 人机对话插件

人机对话面板插件安装于装置面板上,是装置与外界进行信息交互的主要部件,采用大屏幕液晶显示屏,全中文菜单方式显示(操作),主要功能为:键盘操作、液晶显示、信号灯指示及串行口调试。

5.3 装置跳线说明

表 5-1 装置跳线说明

插件型号	跳线名称	出厂默认	描述
	JP1	上端	上端: 0~5V输入 下端: 4~20mA输入
	JP2	上端	上端: 0~5V输入 下端: 4~20mA输入
211CDI 1 + 14	JP3	上端	上端: 0~5V输入 下端: 4~20mA输入
2#CPU 插件	JP4	上端	上端: 4~20mA输出 下端: 0~5V输出
	JP5	上端	上端: 4~20mA输出 下端: 0~5V输出
	JP6	上端	上端:运行状态 下端:调试状态
	JP7、JP8	上端	上端: 串口1 RS485状态 下端: 串口1 RS232状态(打印口)
5#信号插件	P1a-P1b	短接	短接: 带防跳功能 断开: 取消防跳功能

5.4 装置端子定义

本节所列的背板端子图对应于 WFB-8206 的典型配置。

5#	4#	3#		2#			1#				
NXH-866		NKR-825		NPU-858		NJL-873					
信号插件	空插件	开入插件			CPU插	件		交流插件 (含电源)			
01 信号公共端 02 运行异常 03 保护跳闸信号 04 05 控制回路断线		01 1 02 1 03 1 04 1 05 1 1	闭锁母差 跳闸出口3	01 02 03 04 05	485-] 0V (RXD 1 GND +	ドロ /打 Pロ 串 ロ	X01 IN+ X02 IN- X03 GNDEXT X04 GJCK1	电源正 电源负 屏蔽地 告警出口	电源	ON 1 O OFF
06 事故总信号 07 事故总信号 08 A用出口1		06 07 08 09 弾	跳闸出口2 跳闸出口1 簧未储能	06 07 08 09	485- 0V GPS+(I GPS-(I	B) E B) 75	口 2 码时 冲时	X05 GJCK2	告警出口	J	OIT.
10 11 12 4 4 4 4 4 4 4 4 4 4 4 4 4		11 下 12 接	隔刀/工作位隔刀/试验位地刀	10	GPS-(I	P)	נים ני	CIA1	交流2	变换	CIA1'
13 ← A B用出口3 14 ← A B用出口3 15		14 遥 15 遥	信开入1 信开入2 信开入3					CIB1	03	04	CIB1'
16 17 18		17 遥	信开入4 信开入5 信开入6					I4(IA)	07	08	I4' (IA')
19 控制电源+ 20 至跳闸线圈 21 跳位监视		20 遥	信开入7 信开入8 信开入9		ETH1			I5 (IB)	09	10 12	I5' (IB')
22 保护跳闸入口 23 手动跳闸入口 24 手动合闸入口		23 遥	信开入10 信开入11 信开入12				以太网口	17 18	13 15	14 16	I7'
25 保护合闸入口 26 控制电源- 27 至合闸线圈		25 备	用开入1 用开入2 用开入3		ETH2		以	I9	17	18	I9'
28 29 30 i 跳闸出口4		28 备	用开入4 用开入5 用开入6				太网口2	UA2 UC2	19 21	20	UB2 UN2
		31 备, 32 充	用开入7 电硬压板 号复归	 [i	ЕТНЗ		以太	UA1 UC1	23 25	24 26	UB1 UN1
34 35 36		34 远	方/就地 修压板 入公共负				《岡口3		27	28	

图 5-9 WFB-8206 背板端子图

5.4.1 背板接线说明

1#交流变换插件(含电源)

端子 X01、X02 为装置辅助电源输入端,接入直流 220V/110V。X01 接正极性端、X02 接负极性端、X03 接电源地;

端子 X04~X05 为失电告警和装置异常接点,失电告警和装置异常共用此接点;

端子 101、102、103、104、105、106 分别为 A 相、B 相、C 相测量电流输入, 其中 101、103、105 为极性端;

端子 107、108、109、110、111、112 分别为 A 相、B 相、C 相保护电流输入,其中 107、109、111 为极性端;

端子 113~118 为空端子;

端子 119、120、121、122 为 II 母电压 UA2、UB2 相、UC2 相及 UN2 输入端;

端子 123、124、125、126 为 I 母电压 UA1、UB1 相、UC1 相及 UN1 输入端;

端子 127~128 为空端子。

2#CPU 插件

端子 201~203、204~206 为两组 RS485 通讯口,其中 201~203 可复用为 RS232 打印接口;

端子 207~208 为 B 码对时输入端口,接 485 差分电平;

端子 209~210 为硬接点脉冲对时输入端口,接有源+24V 脉冲接点。

3#开入插件

端子 301~302 为闭锁母差开出接点;

端子 303~304、305~306、307~308 为跳闸开出 3、跳闸开出 2、跳闸开出 1 接点;

端子 309 为弹簧未储能开入(常闭);

端子 310 为左隔刀/工作位开入;

端子 311 为右隔刀/试验位开入;

端子 312 为接地刀/备用开入;

端子 313~324 为 12 路遥信开入;

端子 325~331 为 7 路备用开入;

端子 332 为充电硬压板开入;

端子333为信号复归开入;

端子 334 为远方/就地开入;

端子 335 为装置检修硬压板开入;

端子 336 为开入公共负端;

为了防止在保护装置进行试验时,有关报告经 IEC60870-5-103 规约接口向监控系统发送相关信息,而干扰调度系统的正常运行,一般在屏上设置一投检修态压板,在装置检修时,将该压板投上,在此期间进行试验的动作报告不会通过通信口上送,但本地的显示、打印不受影响;运行时应将该压板退出。

4#为空插件

5#信号插件

端子 501 为信号公共端;

端子 502 为运行异常信号;

端子 503 为保护跳闸信号;

端子 504 为空端子;

端子 505 为控制回路断线信号;

端子 506~507 为事故总信号:

端子 508~509 为备用开出接点;

端子 510~511 为备用开出接点;

端子 512~513 为备用开出接点(常开);

端子 512~514 为备用开出接点(常闭);

端子 515~518 为空端子;

端子 519 为控制电源正端+KM;

端子 520 为至跳闸线圈输入;

端子 521 为跳位监视输入;

端子 522 为保护跳闸入口输入;

端子 523 为手动跳闸入口输入;

端子 524 为手动合闸入口输入;

端子 525 为保护合闸入口输入;

端子 526 为控制电源负端-KM;

端子 527 为至合闸线圈输入;

端子 528~529 为保护跳闸出口 4 接点;

端子 530~531 为保护跳闸开出接点;

端子 532 为遥跳输入接点;

端子 533 为遥合输入接点;

端子 534~536 空端子。

注意: 所有未定义的端子, 现场请勿配线, 让其悬空。

5.5 典型接线

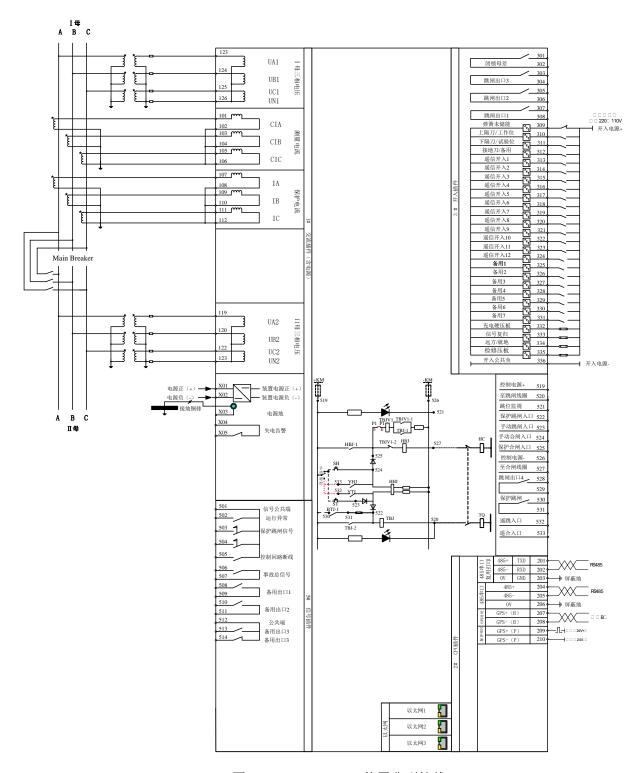


图 5-10 WFB-8206 装置典型接线

6 定值

装置提供 8 个独立的定值区,可以满足电力系统不同的运行工况。正常运行时,运行定值区可以是其中任意一个,并且仅有运行定值区的保护定值有效。设备参数定值等为所有定值区公用。

6.1 WFB-8206 定值单

6.1.1 设备参数定值

表 6-1 设备参数定值

序号	名称	代号	范围	步长	缺省值	备注
1	定值区号		0~7	1	0	8 个独立的定值区
2	循环上送周期	XHSS	10~600s	1	15	整定循环上送后台的时间定值
3	主画面显示一次值	HMXS	0~1	1	0	0: 二次值; 1:一次值
4	PT 变比	PTBB	1~9999	1	100	PT 变比值
5	CT 变比	CTBB	1~9999	1	100	CT 变比值
6	SOE 复归方式	FGFS	0~1	1	1	0: 自动复归; 1:手动复归
7	两三表法	23BF	2~3	1	3	2: 两表法; 3:三表法。
8	累计控制▲	LJZK	0~1	1	1	
9	操作次数初始值▲	JSCZ	0~50000	1	0	
10	故障操作初始值▲	GZCZ	0~50000	1	0	
11	电寿命磨损初值 A▲	DSMA	0~100	0.01	0	
12	电寿命磨损初值 B▲	DSMB	0~100	0.01	0	额定的百分数
13	电寿命磨损初值 C▲	DSMC	0~100	0.01	0	
14	操作超界次数▲	CJCS	100~50000	1	50000	
15	额定开断电流▲	EDKDI	0~100	0.01	100	
16	额定开断次数▲	EDKDN	1~1000	1	1000	
17	电寿命告警系数▲	GJXS	0~100	0.01	100	

② 表中 "▲"标记的参数仅在选配备注中相应保护时才有。

公 当没有表中"▲"标记的参数时,后续的参数会占有"▲"标记的定值的位置紧挨上一个参 数排列。

6.1.2 保护定值

表 6-2 保护定值

序号	名称	代号	范围	步长	缺省值	说明	备注
1	功能控制字	GNKZZ	0000~FFFF				详见表 6-3
2	低压闭锁定值	Udybs	50.0~100.0V	0.01V	70V		
3	负压闭锁定值	U2fy	2.0~30.0V	0.01V	30V		
4	充电过流 I 段定值	Icd1	0.4In -20In	0.01A	20In A		
5	充电零流 I 段定值	I0cd1	0.1In -20In	0.01A	20In A		
6	充电 I 段延时	Tcd1	0.05s-100s	0.01s	100s		
7	充电 I 段投入时间	Ttrcd1	2.00s-30.00s	0.01s	2s		
8	充电过流Ⅱ段定值	Icd2	0.1In -20In	0.01A	20In A		
9	充电零流Ⅱ段定值	I0cd2	0.1In -20In	0.01A	20In A		
10	充电Ⅱ段延时	Tcd2	0.1s-100s	0.01s	100s		
11	充电Ⅱ段投入时间	Ttrcd2	2.00s-30.00s	0.01s	2s		
12	过流 I 段定值	Idz1	0.4In~20In	0.01A	20In A		
13	过流 I 段延时	Tdz1	0s~100s	0.01s	100s		
14	过流Ⅱ段定值	Idz2	0.1In~20In	0.01A	20In A		
15	过流Ⅱ段延时	Tdz2	0.1s~100s	0.01s	100s		
16	过流Ⅲ段定值	Idz3	0.1In~20In	0.01A	20In A		

17	过流Ⅲ段延时	Tdz3	0.1s~100s	0.01s	100s
18	零流I段定值	I0dz1	$0.4 \text{In} \sim 20 \text{In}$	0.01A	20In A
19	零流Ⅰ段延时	T0dz1	0s~100s	0.01s	100s
20	零流Ⅱ段定值	I0dz2	0.1In~20In	0.01A	20In A
21	零流Ⅱ段延时	T0dz2	0.1s~100s	0.01s	100s
22	零流Ⅲ段定值	I0dz3	$0.1 \text{In} \sim 20 \text{In}$	0.01A	20In A
23	零流Ⅲ段延时	T0dz3	0.1s~100s	0.01s	100s
24	弹簧未储能延时	Tthwcn	1s∼100s	0.01s	100s

表 6-3 功能控制字

		100	20 DE1T IN 1	•	
位序号	名称	状态	缺省值	说明	备注
1.	控制回路检测投	投或退	退	投:投入 退:退出	
2.	PT1 异常投	投或退	退	投:投入 退:退出	
3.	PT2 异常投	投或退	退	投:投入退:退出	
4.	PT1 异常退复压	投或退	退	投:投入退:退出	
5.	PT2 异常退复压	投或退	退	投:投入退:退出	通过"+"、
6.	充电I段复压闭锁	投或退	退	投:投入退:退出	"-"键选
7.	充电Ⅱ段复压闭锁	投或退	退	投:投入退:退出	择投、退
8.	充电闭锁母差	投或退	退	投:投入 退:退出	., , ,
9.	过流I段复压闭锁	投或退	退	投:投入退:退出	
10.	过流Ⅱ段复压闭锁	投或退	退	投:投入退:退出	
11.	过流III段复压闭锁	投或退	退	投:投入退:退出	
12.	零流Ⅲ段跳闸	投或退	退	投:投入退:退出	
13.	复压告警投	投或退	退	投:投入退:退出	

为了保证现场跳闸出口方式的灵活性,装置将跳闸矩阵定值开放出来供用户整定。

表 6-4 出口矩阵定义

序号	跳闸矩阵名称	保护名称	整定范围	备注
1	充电 I 段	CD1	0x0000000~001C47C	
2	充电Ⅱ段	CD2	0x0000000~001C47C	
3	过流 I 段	GL1	0x0000000~001C47C	
4	过流Ⅱ段	GL2	0x0000000~001C47C	
5	过流Ⅲ段	GL3	0x0000000~001C47C	
6	零序过流 I 段	LL1	0x0000000~001C47C	
7	零序过流Ⅱ段	LL2	0x0000000~001C47C	
8	零序过流Ⅲ段	LL3	0x0000000~001C47C	

装置中各元件的跳闸矩阵通道名称的定义见下表:

表 6-5 跳闸出口位定义

		P	. ,_,_,
矩阵位	出口名称	对应装置端子	备注
2	跳闸出口3	303~304	
3	跳闸出口 2	305~306	
4	跳闸出口1	307~308	
5	保护跳闸	530~531	
6	跳闸出口 4	528~529	
10	保护跳闸信号	501~503	
14	备用出口1	508~509	
15	备用出口 2	510~511	

16	备用出口3	512~513	常开接点
	备用出口3	512~514	常闭接点

跳闸矩阵出口值为十六进制数,整定方法是进入"出口",选择需要整定的保护,按确定键后进入整定页面,在需要跳闸的出口位通过"+"、"-"键选择投、退,确认保存后则可得到该保护的跳闸出口。

6.1.3 软压板

表 6-6 压板

序号	名称	状态	说明	备注
1.	充电过流 I 段压板	投或退	投:投入 退:退出	
2.	充电零流 I 段压板	投或退	投:投入 退:退出	
3.	充电过流Ⅱ段压板	投或退	投:投入 退:退出	1番2 寸 ","
4.	充电零流Ⅱ段压板	投或退	投:投入 退:退出	通过"+"、
5.	过流 I 段压板	投或退	投:投入 退:退出	- 姓. - 择投、退
6.	过流Ⅱ段压板	投或退	投:投入 退:退出	1年1又、区
7.	过流Ⅲ段压板	投或退	投:投入 退:退出	
8.	零流 I 段压板	投或退	投:投入 退:退出	
9.	零流Ⅱ段压板	投或退	投:投入 退:退出	
10.	零流Ⅲ段压板	投或退	投:投入 退:退出	

6.1.4 通信参数

表 6-7 通信参数

		₹6-7 ₺	口多ை
序号	名称	整定值	整定范围
1.	装置地址	0~254	0~254
2.		串口1	规约可选 103 或 Modbus
		串口 2	规约可选 103 或 Modbus
	通信参数	以太网口1	规约可选 103 或 103/104
		以太网口2	规约可选 103 或 103/104
		以太网口3	规约可选 103 或 103/104
3.		103	根据不同的通信接口选择通信规
	通信规约	Modbus	约
		103/104	
4.		波特率	2400、4800、9600、19200
	串口1	校验位	无校验、奇校验、偶校验
		模式	RS485、RS232
5.		波特率	2400、4800、9600、19200
	串口 2	校验位	无校验、奇校验、偶校验
		模式	RS485
6.		IP (IP 地址)	000.000.000.000~255.255.255.255
	以太网口1	NM (子网掩码)	000.000.000.000~255.255.255.255
		GW (网美)	000.000.000.000~255.255.255.255
7.		IP (IP 地址)	000.000.000.000~255.255.255.255
	以太网口 2	NM (子网掩码)	000.000.000.000~255.255.255.255
		GW (网美)	000.000.000.000~255.255.255.255
8.	以太网口3	IP (IP 地址)	000.000.000.000~255.255.255.255
	MANNI 3	NM (子网掩码)	000.000.000.000~255.255.255.255

		GW (网美)	000.000.000.000~255.255.255.255
9.		PPS	秒脉冲对时
	对时方式	PPM	分脉冲对时
		B码	IRIG-B 对时

注: 103 表示支持通用分类服务,支持 4 个主站连接; 103/104 表示支持许继 103 和许继 104 , 支持 1 个 103 主站和 4 个 104 主站。

6.2 定值整定说明

- ◆ 在整定定值前必须先整定保护定值区号。
- ◆ 当某项定值不用时,避免整定值为 0。如果是过量保护则整定为上限值,如果是欠量保护则整 定为下限值,延时整定为上限值,功能控制字退出,软压板退出。
- ◆ 速断保护、加速保护延时一般需整定几十到一百毫秒的延时,由于微机保护没有过去常规保护 中的继电器动作延时,所以整定成 0 秒时可能躲不过合闸时的冲击电流。

7 使用说明

装置面板界面如下图所示。

图 7-1 装置界面图

7.1 液晶显示说明

7.1.1 主界面显示

主界面显示如下图所示。

共分为 4 个区域: 日期显示; 时间显示; 测量数据显示; 检修状态, 远方/就地状态, 远方/就地状态在液晶下方以汉字显示, 有远方/就地开入则显示"远方", 无开入则显示"就地"。检修压板投入时"检修"二字闪烁, 不投入时不显示。

共有 6 个显示数据,同时装置可根据系统参数灵活显示一次值或二次值。当选择显示二次值时,P 的量纲默认为"W",Q 的量纲默认为"var";当选择显示一次值时,电压、电流的量纲前增加"k",即变为"kV"和"kA",P 的量纲默认为"kW",Q 的量纲默认为"kvar"。

7.1.2 装置正常运行状态

装置正常运行时,"运行"灯亮,"告警"灯灭。在主界面按下"复归"键,复归所有跳(合)闸指示灯,使液晶显示处于正常显示画面。最后一次在某个子菜单下操作某个按键后,5分钟内如果没有再次操作按键,则装置关闭该子菜单,退回到主界面。

就地 检修

液晶的背光从最后一次操作键盘或装置自动弹出报告的时刻起, 6 分钟内没有再次操作键盘或者有新的报告弹出,则装置自动关闭液晶背光。

液晶的背光关闭时,所有键的功能均为点亮背光(即按任意键点亮背光)。背光点亮后按键恢复原有功能。

7.1.3 保护动作时液晶显示说明

装置能存储 100 次动作报告,在装置正常运行过程中,如果有保护动作、装置告警或者开入变位时,相应的报告会弹出到界面最前端,如下图所示:

序号1为最新的报告,序号2为次新的报告;

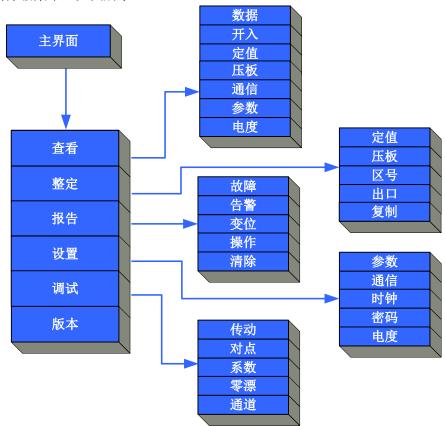
按 "↑"和 "↓"分别向上和向下移动光标;按 "←"和 "→"分别向上翻页和向下翻页。 按 "复归"键后关闭弹出装置报告画面,退到主界面。

7.2 指示灯说明

装置共设有六个指示灯,依次为运行灯、告警灯、跳闸灯、备用灯、跳位灯、合位灯。

指示灯名称	颜色	说明
运行	绿色	装置运行时为常亮,当故障启动时运行灯闪烁。
<u> </u>	红色	正常运行时熄灭,动作于告警的保护动作时或装置发生故障时
		点亮,保持到有复归命令发出。
跳闸	红色	装置正常运行时熄灭,动作于跳闸的保护动作时点亮,保持到
		有复归命令发出。
备用	红色	备用灯,常灭。
跳位	绿色	用来指示断路器位置,当断路器在合闸位置时熄灭,在跳闸位
		置时点亮。
合位	红色	用来指示断路器位置,当断路器在跳闸位置时熄灭,在合闸位
		置时点亮。

注意:"跳闸"灯点亮后只有在按下"信号复归"或远方信号复归后才熄灭。


7.3 调试接口和键盘说明

面板上提供有一个10键键盘,各键盘功能如下:

按键名称	按键功能
	正常运行时显示主菜单
"取消"	取消当前操作
	返回上级菜单
"确定"	命令执行
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	确认修改
"+"	数字增加及其它菜单项目选择
"_"	数字减小及其它菜单项目选择
" , "	命令菜单选择
I	显示换行
<i>"</i> ↓"	命令菜单选择
*	显示换行;
"←"	光标左移、向上翻页;
<i>"→"</i>	光标右移、向上翻页;
"复归"	信号复归;
"区号"	修改定值区号。

7.4 命令菜单

命令菜单采用分级菜单,如图所示:

7.5 菜单说明

7.5.1 主菜单

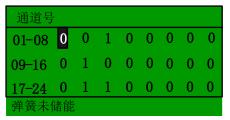
在主界面下按"取消"键,可进入主菜单,主菜单显示如下:

主菜单共有 6 个,分别为"查看"、"整定"、"报告"、"设置"、"调试"、"版本",以图标形式显示。每页画面显示 3 个图标,按左/右键循环显示。如进入主菜单后,当前页面显示"查看"、"整定"、"报告",按一次"→"键后,当前页面显示"整定"、"报告"、"设置"。

7.5.2 查看

◆ 数据:显示各模拟量通道的当前数值。

在主菜单下,按左/右键移动光标,当光标位于需要进入的菜单时,按"确认"键可以进入相应的子菜单,各个子菜单页面如下:


"数据"子菜单主要显示各模拟量通道的当前数值;按"确认"键进入后数据浏览页面,如下图:

No	简称	量值
1	Ia	0.00 A
2	Ib	0.00 A
3	Ic	0.00 A
A相保护电流		

按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

◆ 开入:显示各开入量状态。

按"确认"键进入后开入量浏览页面,如下图:

按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向左和向右移动光标。

◇ 定值:浏览当前装置的保护定值。

按"确认"键进入后定值浏览页面,如下图:

No.	简称	量值
1	GNKZZ	0001
2	Udybs	70. 00V
3	U2fy	30. 00V
功能	控制字	区号 0

按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。将 光标移到菜单最底端后按"↓"键可将光标移动到区号处,当光标位于区号处时,可以使用"+"和 "-"键进行定值区的选择。

◆ 压板:浏览当前装置的压板状态。

按"确认"键进入后定值浏览页面,如下图:

No.	名称	状态
1	充电过流 I 段压板	退
2	充电零流I段压板	退
3	充电过流II段压板	退
4	充电零流II段压板	投

按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

◆ 通信:显示装置地址,装置的通信方式和通信规约。

显示 4 部分内容: 1)装置地址; 2)当前装置通信方式(485 还是以太网); 3)当前通信规约(103 还是 modbus); 4)当前装置通信状态。

通信参数浏览 装置地址: 011 通信参数: **申口1** 通信规约: 103 通信状态: 中断

光标位于"通信参数"处,按 "+"或 "-"键可选择串口 1、串口 2、以太网 1、以太网 2、以太网 3。

◇ 参数:浏览当前装置的参数值。

按"确认"键进入后参数浏览页面,如下图:

No.	简称	量值
1	XHSS	15.00 s
2	HMXS	0
3	PTBB	100
循环	上送周期	

按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

◆ 电度:浏览装置当前的积分电度值。

按"确认"键进入后电度量浏览页面,如下图:

按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

7.5.3 整定

整定子菜单如下图所示:

按"↑"、"↓"、"←"、"→"选择需要整定的子菜单。

◇ 定值:保护定值修改、整定。

按"确认"键进入后定值整定页面,如下图:

No.	简称	量值
1	GNKZZ	0001
2	Udybs	70. 00V
3	U2fy	03<mark>5. 00</mark>V
负日	医闭锁定值	区号[0]

按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。


定值修改:

进入菜单后光标位于第一个定值的最右边数字位;按"↑"和"↓"分别向上和向下移动进行 定值的选择。当光标位于定值的最右边数字位时,按"→"可以向下翻页;当光标位于定值的最左 边数字位时,按"←"可以向上翻页;当光标位于定值的某一位时,可以使用"+"和"-"键进行 相应量值位的增加和减少; 将光标移到菜单第一个定值的最左端按"↑"键可将光标移动到区号处,当光标位于区号处时,可以使用"+"和"-"键进行定值区的整定。按"↑"或"↓"回到第一个定值处。

将光标移到菜单最后一个定值的最右端按"↓"键可将光标移动到区号处,当光标位于区号处时,可以使用"+"和"-"键进行定值区的整定。按"↑"或"↓"回到最后一个定值处。

定值保存:

定值修改完毕后,按"退出"键装置弹出对话框提示用户定值已修改是否需要保存,如下图:

通过"←"或"→"选择是否保持修改值。

当光标位于"是"时,按"确认"键,弹出对话框,提示用户输入密码,如下图:

密码最大位数为 6 位,由四个方向键组成。输入完成后按"确认"键,如果密码错误,弹出对话框,提示用户密码不正确并返回到定值修改界面。如果密码正确,弹出对话框,提示用户定值修改成功。

按当光标位于"否"时,按"确认"键;装置退出到定值整定菜单。

◆ 压板:修改当前压板状态。

按方向键可将光标移动到需要投退的压板处,可以使用"+"或"-"键进行投入或退出修改。 如下图:

No.	名称	状态
1	充电过流 I 段压板	退
2	充电零流 I 段压板	退
3	充电过流II段压板	退
4	充电零流II段压板	退

压板修改保存同定值保存。

◇ 区号:修改当前定值区号。

移动光标到"区号"选择框,按下确定键,进入区号修改菜单。如下图:

当前区号: 0 设置区号: **4**

在设置区号修改区域通过"+"、"-"键进行目标定值区的修改。按"确认"键后提示修改区号成功,按"取消"键返回上一级菜单。

◆ 出口:修改保护装置的出口。

移动光标到"出口"选择框,按下确定键,进入出口修改菜单。如下图:

No.	保护名称	出口
1	CD1	001C478
2	CD2	0000420
3	GL1	0000420
充申	lI段	

按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

出口修改:

进入菜单后光标位于第一个保护出口的最右边数字位,按"↑"和"↓"分别向上和向下移动进行保护出口的选择。当光标位于保护出口的最右边数字位时,按"→"可以向下翻页。

将光标位于保护出口处,按"确认"键进入出口整定菜单,如下图所示。

Ch.	通道名称	状态
2	跳闸出口3	退
3	跳闸出口2	投
4	跳闸出口1	退
5	保护跳闸	退

当光标位于出口位时,按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

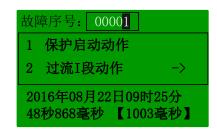
按"+"、"-"键进行出口状态投退。按"确认"键后修改当前出口位状态返回上一级菜单,按 "取消"键后不改变出口状态返回上一级菜单。

出口修改完毕后,按"退出"键装置弹出对话框提示用户定值已修改是否需要保存。保存操作 同定值修改保存。

◆ 复制:提供定值区间之间的复制功能。

移动光标到"复制"选择框,按下确定键,进入定值区复制菜单。如下图:

源区号 : 0 目的区号: 4 复制功能是指将源区号(0区)的定值整定值拷贝至目的区号(4区)。源区号和目的区号选择完成后按"取消"键提示用户是否拷贝定值区定值。拷贝操作保存同定值修改保存。


7.5.4 报告

报告子菜单如下图所示:

◆ 故障:用于浏览保护动作报告和动作定值。

当光标位于"故障"子菜单时,按确定键进入故障报告浏览页面,如下图:

光标位于故障序号框中,故障序号为最新的故障序号,按 "+"和 "-"键可以依次查看故障报告。

故障报告框内包含了本次故障的所有动作信息,如过流 I 段动作。包括相应动作信息在本次故障报告中发生的先后次序,动作信息的名称以及该动作信息中包含的故障量值(没有"->"表示该动作信息中没有故障量值)。

按上下方向键可以使光标在不同的动作信息中切换。当光标位于某个动作信息时,按确定键可以进入报告量值浏览页面,如下图(按"↑"和"↓"分别向上和向下移动光标)。

No.	简称	量值
1	Ia	5. 230 A
2	Ib	0.000
3	Ic	0.000
A相	保护电流	

按退出键返回到故障报告浏览页面。

报告框下部显示的是该动作信息的绝对动作时间(2016年08月22日 09时25分48秒868毫秒)和相对动作时间(1003毫秒)。

◆ 告警:用于浏览各种装置和保护告警的报告。

当光标位于"告警"子菜单时,按确定键进入告警报告浏览页面,如下图:

总数: 100 报告序号: 08**6** 控制回路异常

2016年08月22日 09时25分48秒868臺秒

光标位报告序号框中,报告序号为最新的告警报告序号,按"+"和"-"键可以依次查看告警报告。

液晶中部为相应报告序号的告警信息的名称,如:控制回路异常。

液晶底部为相应告警信息的动作时间,如:2016年08月22日 09时25分48秒868毫秒。

◆ 变位:用于浏览各个遥信变位记录及各个开入变位记录。

变位子菜单主要用于浏览装置的开入变位报告,包括遥信开入变位等信息。

当光标位于"变位"子菜单时,按确定键进入开入变位报告浏览页面,如下图:

变位报告操作方式同"告警"报告。

总数: 100 报告序号: 08<mark>6</mark> 遥信1动作

2016年08月22日 10时25分48秒868毫秒

◇ 记录:用于浏览各种装置的操作记录。

记录子菜单主要用于浏览装置的操作记录,包括修改定值、切换定值区、修改通道系数等信息。 当光标位于"记录"子菜单时,按确定键进入操作记录报告浏览页面,如下图:

"记录"报告操作方式同"告警"报告。

总数: 100 报告序号: 080 装置上电 2016年08月22日 11时25分48秒868毫秒

◆ 清除:用于清除所有的报告记录,可以有选择的清除。 当光标位于"清除"子菜单时,按确定键弹出输入密码对话框,如下图:

密码输入正确后,进入清除报告画面,如下图所示:按"↑"和"↓"键可以使光标在故障报告、告警报告、变位报告之间进行切换。

当光标位于故障报告时,按确定键即可完成相应报告的清除。清除报告时有相应的操作记录。

7.5.5 设置

设置子菜单如下图所示:

◆ 参数:用来设置"循环上送周期"、"主界面显示一次值"、"PT 变比"、"CT 变比"等内容。 当光标位于"参数"子菜单时,按确定键,输入正确密码后进入,如下图:

No.	简称	量值
1	XHSS	15.00 s
2	HMXS	0
3	PTBB	0100
PT变比		

循环上送周期:整定循环上送后台的时间定值;主画面显示一次值:整定显示一次值还是二次值;PT变比:整定PT变比;CT变比:整定CT变比;SOE复归方式:整定手动复归方式还是自动复归方式;两三表法:整定用三表法还是两表法测量。菜单结构及整定方式同定值整定菜单。

◆ 通信: 主要用来设置装置地址、通信规约、通信方式。

输入密码后,进入通信参数设置界面,如下图所示:按"↑"和"↓"键可以使光标在装置地址、通信参数、通信规约之间进行切换并依次设置。

通信参数设置 装置地址: 011 通信参数: <mark>串口1</mark> 通信规约:103

装置地址:按"↑"或"↓"键将光标移至装置地址位置,按"+"或"-"设置装置地址。

通信参数:按"↑"或"↓"键将光标移至通信参数位置,按"+"或"-"键选择通信参数,通信参数可选择串口1、串口2、以太网口1、以太网口2、以太网口3。

通信规约:按"↑"或"↓"键将光标移至通信规约位置,按"+"或"-"选择通信规约。串口 1、串口 2 能选择 103 或 Modbus 规约。以太网口 1、以太网口 2、以太网口 3 能选择 103 或 103/104

规约。

注: 103 表示支持通用分类服务,支持 4 个主站连接; 103/104 表示支持许继 103 和许继 104, 支持 1 个 103 主站和 4 个 104 主站。

◇ 时钟:用于修改系统的时钟及对时方式。

当光标位于"时钟"子菜单时,按确定键并输入密码后,进入时钟设置画面,如下图所示:按 "←"和"→"键可以使光标在年、月、日、时、分、秒之间进行切换。

时钟设置: 当光标位于对时钟设置框时,按"↑"、"↓"、"←"、"→" 键移动光标,按"+"、"-" 键可以对装置的时钟进行设置。

对时方式设置: 当光标位于对时方式选择框时,按 "+"、"-"键可以对装置的对时进行设置。按 "+"、"-"键可以在 "PPS"、"PPM"、"B 码"之间进行对时方式的选择。

◇ 密码:用于修改装置的密码。

装置初始密码为 6 个 "→"键。当光标位于"密码"子菜单时,按确定键进入密码修改画面,如下图所示:按"↑"和"↓"键可以使光标在旧的密码、新的密码、重复密码之间进行切换。密码最大位数为 6 位,由"↑"、"↓"、"←"、"→"四个方向键组成。

◆ 电度:用于设置装置的电度量初始值。

当光标位于"电度"子菜单时,按确定键并输入密码后进入电度设置界面,如下图所示:

按"↑"和"↓"键可以使光标在正向有功电度、反向有功电度、正向无功电度、反向无功电度等几个电度值之间进行切换。按左右方向键移动光标位置,按"+"、"-"键改变光标所在位置数字的大小。

修改完毕后, 按确定键保存修改结果。

7.5.6 调试

调试子菜单如下图所示:

◆ 传动:传动"子菜单主要用于出口传动。

当光标位于"传动"子菜单时,按确定键并输入密码后进入装置通道传动界面,如下图所示:

在通道传动界面下,按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

当光标位于所要进行传动的通道时,按确定键装置即可进行通道传动,相应的开出通道闭合。

注意: 传动出口必须投入检修压板,如果检修压板没有投入,则装置提示用户传动出错。

◇ 对点:对点子菜单主要完成通信对点功能。

当光标位于"对点"子菜单时,按确定键进入装置通信对点界面,如下图所示:

点表	長类型: 故障信息	
INF	名称	扇区
95	充电I段	1
98	充电II段	1
94	过流I段	1

点表类型:通过"↑"和"↓"键将光标移至点表类型处,按"+"、"-"键可选择"故障信息"点表、"告警信息"点表、"遥信信息"点表和"遥测信息"点表。

故障信息点表:在故障信息对点界面下,按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

当光标位于所要进行对点测试的通信点时,按确定键装置弹出对点对话框,如下图:

在对话框中,按"↑"和"↓"分别向上和向下移动光标选择动作和返回,选中后按确定键, 装置提示对点信息已发出,即可完成一次对点测试。 告警信息点表:在告警信息对点界面下,按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。当光标位于所要进行对点测试的通信点时,按确定键装置弹出对点对话框,如下图:

当光标位于所要进行对点测试的通信点时,按确定键装置弹出对点对话框,如下图:

在对话框中,按"↑"和"↓"分别向上和向下移动光标选择动作和返回,选中后按确定键, 装置提示对点信息已发出,即可完成一次对点测试。

遥信信息点表:在遥信信息对点界面下,按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。当光标位于所要进行对点测试的通信点时,按确定键装置弹出对点对话框,如下图:

点表类型: 遥信信息	
INF 名称	扇区
189 上隔离刀/工作位	2
212 下隔离刀/试验位	2
213 接地刀	2

当光标位于所要进行对点测试的通信点时,按确定键装置弹出对点对话框,如下图:

在对话框中,按"↑"和"↓"分别向上和向下移动光标选择动作和返回,选中后按确定键, 装置提示对点信息已发出,即可完成一次对点测试。

遥测信息点表:在遥测信息对点界面下,按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。当光标位于所要进行对点测试的通信点时,按确定键装置弹出对点对话框,如下图:

点表	类型: 遥测信息	
INF	名称	扇区
95	A相电压	2
96	B相电压	2
97	C相电压	2

当光标位于所要进行对点测试的通信点时,按确定键装置弹出对点对话框,如下图:

在对话框中,按"↑"和"↓"分别向上和向下移动光标选择按遥信值得额定值或 0.00%的额 定值进行遥测对点,选中后按确定键,装置提示对点信息已发出,即可完成一次对点测试。

◇ 系数:系数子菜单主要用于校正通道采样值。

当光标位于"系数"子菜单时,按确定键并输入密码后,进入通道系数修改界面,如下图所示: 按"↑"和"↓"分别向上和向下移动光标;按"←"和"→"分别向上翻页和向下翻页。

No.	简称	量值
1	Ia	0.01
2	Ib	0.00
3	Ic	0.00
A相	保护电流	

当光标位于某一个通道时按确定键进入相应通道系数修改界面,如下图:

在系数修改框中,按"+"和"-"键修改相应的数值。系数修改过程中,量值随系数的变化而实时变化,当量值调整到满足误差要求时按确定键装置弹出对话框提示系数修改成功。

◆ 零漂:零漂子菜单主要用于校正通道零漂。
当光标位于"零漂"子菜单时按确定键后输入正确密码后,装置提示零漂校对成功。

◆ 通道:通道子菜单主要用于浏览相应通道的采样值及相位角度。当光标位于"通道"子菜单时按确定键通道浏览界面,如下图:

No.	简称	量值
1	Ia	0. 01
2	Ib	0.00
3	Ic	0. 00
A相	保护电流	

当光标位于某一个通道时按确定键进入相应通道浏览界面,如下图:

通道浏览

简 称: Ia 采样值: 1.01 相 位: 150

所有通道的相位均为相对于 A 相电压的相位, 当 A 相电压小于无压门槛时, 所有通道的相位为 0~360 之间的随机值。

7.5.7 版本

按确定键后可以查看当前的版本号和校验码。如下图:

装置版本 类 型 充电 型 号 WFB-8206/R1 版本号 01.00(0000) 校验码 9281

8 装置调试大纲

8.1 调试注意事项

- (1) 调试前请仔细阅读本说明书。
- (2) 试验过程中须尽量避免插拔装置插件,不要带电插拔装置插件,不要用手或者导电体触摸插件电路及元器件。
- (3) 实验前须检查屏柜及装置在运输中是否有明显的损伤或螺丝松动。特别是 CT 回路的螺丝及连片,不允许有丝毫的松动。
- (4) 试验前须检查插件是否插紧。
- (5) 使用的电烙铁、示波器等须与屏柜可靠接地。
- (6) 通信试验前请检查装置规约设置、信息文本是否与通信主站相匹配。

8.2 程序及硬件检查

如果装置的 CRC 校验码(在"版本"菜单中查看)与合格证中记录的一致,即表明程序正确, 装置的各种功能和逻辑正确;装置的出厂编号(在"版本"菜单中查看)和装置机箱上的出厂编号 一致说明装置软硬件一致。

8.3 开关量输入检查

进入"主菜单\查看\开入"菜单,将装置的开入电源分别接入各开入端子,应显示正确的状态。 当断路器在合位或跳位时,装置面板合位指示灯和跳位指示灯的状态应正确显示。

8.4 开出回路检查

进入"主菜单\调试\传动"菜单,进行传动调试。注意:传动试验须投入检修压板。

开出传动可用于现场跳闸出口回路检查,无需保护试验即可触发出口接点。按"↑"、"↓"、"←"、"→"键,选择要传动的开出,按"确定"键,进行传动。按下"复归"键,将保持类型的触点和

信号复归掉,即说明复归继电器正常。

8.5 模拟量输入检查

进入"主菜单\查看\数据"菜单,在装置的保护电流、测量电流、电压输入端加入额定值,查看各模入量,保护电流、电压误差不超过±2.5%或±0.01倍额定值,相角误差不超过±3°;

测量电流不超过额定值的 $\pm 0.2\%$,功率测量误差不超过额定值的 $\pm 0.5\%$;频率测量误差不超过 ± 0.01 Hz;

如果某一路误差过大,进入"主菜单\调试\系数"菜单,对该路进行系数校准。注意:系数校准仅供厂内调试,现场人员请勿操作。

8.6 整组试验

如果上述检查全部正确,装置已基本没有问题。为谨慎起见,可整定装置的定值,然后检查装置的动作情况,确认所使用的保护定值全部正确。请参照本说明书装置功能中的保护逻辑进行测试。

进行实验前,请正确设置保护项的控制字、保护定值、软压板,试验后请检查相应报告记录,如果有通信条件,可同时检查通信主站记录信息的正确性。

8.7 输出接点检查

- 1) 发生保护跳闸或者开关偷跳时,事故总信号接点(506~507)闭合3s。
- 2) 进行遥控跳闸操作,遥跳接点(532~522)应闭合(需要带断路器或模拟断路器配合,否则接点不通)。
- 3) 进行遥控合闸操作, 遥合接点(533~524)应闭合。
- 4) 关闭装置电源或装置故障,告警接点(1X04~1X05)闭合;装置处于正常运行状态(运行灯亮)时,闭锁接点断开。
- 5) 发生运行异常时报警接点(501~502)应闭合;运行异常事件返回时该接点断开。
- 6) 操作回路的控制回路断线时,接点(501~506)应闭合。
- 7)保护动作(跳闸矩阵所有出口位置位),跳闸信号($501\sim503$)、跳闸出口($301\sim302$ 、 $303\sim304$ 、 $305\sim306$ 、 $307\sim308$ 、 $508\sim509$ 、 $510\sim511$ 、 $512\sim513$ 、 $512\sim514$ (常闭)、 $528\sim529$ 、 $530\sim531$)闭合。

8.8 装置试验菜单的说明

辅助测试功能用于厂家生产调试或现场停电检验通信、出口回路,可减少调试的工作量、缩短调试工作时间。

8.8.1 传动试验

进入"调试"→"传动"菜单,可以进行装置故障、保护跳闸出口、运行异常信号、保护跳闸信号等开出传动试验。按"↑"、"↓"、"←"和"→"键将光标停在需要传动的出口项目所在行,按"确认"键进行对应的出口传动试验,试验完成后用户可以按"取消"键退出菜单或者继续浏览

出口项目并进行试验。 特别说明:使用出口传动试验功能时,装置的检修压板必须投入、装置背板 电流端子不接入电流。 进入"调试"->"传动"子菜单要设置可靠的密码,防止误传动出口。

注: 使用出口传动功能有相应的操作记录便于事后分析。

8.8.2 对点试验

用于通信对点试验。操作方法为:进入"调试"→"对点"菜单,点表类型可选故障信息、告警信息、遥信信息和遥测信息,将相应的动作信息、告警信息、遥信信息和遥测信息进行动作和返回对点测试,变位报告可经通信上送监控。进入"对点"子菜单后,用户按"+"和"-"键选择点表类型,按"↑"和"↓"键将光标停在需要测试的信息点所在行,按"确认"键,进行对点测试试验,试验完成后用户可以按"取消"键退出菜单或者继续浏览其它信息点并进行试验。

8.9 装置异常信息说明及处理意见

装置发生异常告警时,液晶背景光将打开,自动弹出相应记录报文,同时告警灯亮。直至按下"复归"键,若此时告警状态仍未消除,则"告警"灯不熄灭,直至操作人员排除故障后,再次按下"复归"键,"告警"灯才能熄灭。

序号	报告信息	说明	处理意见	备注
1	装置硬件自检类 告警信息(包括: 电源、A/D、RAM、 EEPROM、FLASH 自 检出错、开出回路 击穿等)	装置相应硬件不正常,发 "告警"信号,闭锁保护	通知厂家	装置硬件自检类告警信息(包括:电源、A/D、RAM、EEPROM、FLASH自检出错、开出回路击穿等)
2	定值自检出错	定值或压板整定值有错误	重新整定定值或压板	处理后再次出错,请通知 厂家处理
3	跳位异常告警	开关在跳位却有流,发"告 警"信号,不闭锁保护	检查开关辅助触点	
4	PT 异常告警	电压回路断线,发"告警" 信号,闭锁部分保护	检查电压二次回路接 线	表置异常监视类告警信 息大多不闭锁保护,请根
5	控制回路异常	操作回路的跳闸位置和合闸位置中有异常,或者开关跳位和合位开入有异常,发"告警"信号,不闭锁保护	检查开关辅助触点及 控制电源保险;检查 开关跳位和合位开入	据报告信息检查与之对 应的相关回路,排除异常 后,复归告警信息即可。

8.10 事故分析注意事项

为方便事故分析,需要装置原始记录、装置版本信息以及现场故障处理过程的说明。特别建议 用户妥善保存装置的保护动作报告。需要试验时,为了避免频繁试验覆盖故障当时的故障信息,在 进行出口传动或者保护试验前,需可靠保存故障当时的故障信息,需对装置的内部存储的信息以及 通信主站存储的信息进行完整的保存(抄录或通信主站打印)。

保存的信息包括保护动作报告、装置事件报告、状态变位报告、装置操作报告、装置告警报告、

保护定值、软压板和开入量状态、故障时保护和测量数据。现场的其他信息也应记录,包括事件过程、保护装置指示灯状态、主画面显示内容。

如确定有插件损坏,在更换插件时须仔细观察插件状态(包括有无异味、烧痕、元器件异状等)。 如有特殊情况,请通知厂家协助故障信息获取与保存。

9 订货须知

订货时需注明:

- ◆ 产品型号、名称及订货数量;
- ◆ 交流电流、电压和频率额定值;
- ◆ 直流电压额定值(工作电源及出口操作电源)
- ◇ 特殊的功能要求及特殊要求的备品备件;
- ◆ 供货地址及时间。

WFB-8206 微机充电装置的信息(R1版)

(103-规约,版本:1.0,日期:2016-12-27)

1. 保护动作信号

信号	报文 类型	INF	FUN	公共 地址	保护动作结果
保护启动	2	60	211	1	
充电I段动作	2, 70	97	211	1	Ia, Ib, Ic, 3I0
充电Ⅱ段动作	2, 70	98	211	1	Ia, Ib, Ic, 3I0
过流 I 段动作	2, 70	94	211	1	Ia, Ib, Ic
过流Ⅱ段动作	2, 70	95	211	1	Ia, Ib, Ic
过流Ⅲ段动作	2, 70	96	211	1	Ia, Ib, Ic
零流 I 段动作	2, 70	54	211	1	310
零流Ⅱ段动作	2, 70	55	211	1	310
零流Ⅲ段动作	2, 70	56	211	1	310

2. 告警信号

信号	报文类型	INF	FUN	公共地址
装置故障	ASDU_1	191	211	1
定值区变化	ASDU_1	224	211	1
事故总信号(总动作信号)	ASDU_1	212	211	1
预告总信号(总告警信号)	ASDU_1	213	211	1
控制回路异常	ASDU_1	203	211	1
弹簧未储能告警	ASDU_1	143	211	1
跳位异常	ASDU_1	141	211	1
断路器寿命越限告警	ASDU_1	144	211	1
I 母 PT 异常	ASDU_1	231	211	1
II 母 PT 异常	ASDU_1	232	211	1
零流Ⅲ段告警	ASDU_1	218	211	1

复合电压告警	ASDU_1	162	211	1

3. 状态信号

信号	报文类型	INF	FUN	公共地址
检修压板	ASDU_1	64	211	0
充电保护硬压板	ASDU_1	168	211	1
充电过流 I 段压板	ASDU_1	177	211	1
充电零流 I 段压板	ASDU_1	178	211	1
充电过流Ⅱ段压板	ASDU_1	179	211	1
充电零流Ⅱ段压板	ASDU_1	180	211	1
过流 I 段压板	ASDU_1	181	211	1
过流Ⅱ段压板	ASDU_1	182	211	1
过流Ⅲ段压板	ASDU_1	183	211	1
零流I段压板	ASDU_1	185	211	1
零流Ⅱ段压板	ASDU_1	186	211	1
零流Ⅲ段压板	ASDU_1	187	211	1
远方/就地	41	163	1	2
合闸位置	41	164	1	2
跳闸位置	41	165	1	2
合后开入	41	167	1	2
遥信1	41	170	1	2
遥信 2	41	171	1	2
遥信3	41	172	1	2
遥信 4	41	173	1	2
遥信 5	41	174	1	2
遥信 6	41	175	1	2
遥信 7	41	176	1	2
遥信 8	41	177	1	2
遥信 9	41	178	1	2
遥信 10	41	179	1	2
遥信 11	41	180	1	2
遥信 12	41	181	1	2
备用开入1	41	182	1	2
备用开入 2	41	183	1	2
备用开入3	41	184	1	2
备用开入4	41	185	1	2
备用开入5	41	186	1	2
备用开入 6	41	187	1	2
备用开入7	41	188	1	2
上隔刀/工作位	41	189	1	2
下隔刀/试验位	41	190	1	2
接地刀/备用	41	169	1	2

4. 控制

信号	报文类型	INF	FUN	公共地址
信号复归	ASDU_20	19	211	1

切换定值区	ASDU_20	100~107	211	1
充电过流 I 段压板	ASDU_20	33	211	1
充电零流I段压板	ASDU_20	34	211	1
充电过流Ⅱ段压板	ASDU_20	35	211	1
充电零流Ⅱ段压板	ASDU_20	36	211	1
过流 I 段压板	ASDU_20	25	211	1
过流Ⅱ段压板	ASDU_20	26	211	1
过流III段压板	ASDU_20	27	211	1
零流 I 段压板	ASDU_20	29	211	1
零流Ⅱ段压板	ASDU_20	30	211	1
零流Ⅲ段压板	ASDU_20	31	211	1
断路器	ASDU_64	48	1	2

5. 遥测

遥测对象	报文类型	INF	FUN	公共地址
 Ia, Ib, Ic, Ua1, Ub1, Uc1, Uab1, Ubc1, Uca1, P, Q, f1, S, COS ⊄, Ua2, Ub2, Uc2, Uab2, Ubc2, Uca2, f2 	ASDU_50	92~112	1	2

6. 电度

电度对象	报文类型	INF	FUN	公共地址
正向有功积分电度	ASDU_36	6	1	2
反向有功积分电度	ASDU_36	7	1	2
正向无功积分电度	ASDU_36	8	1	2
反向无功积分电度	ASDU_36	9	1	2

7. 录波量

模拟量录波

公共地址	模拟量	信号	ACC
1	A 相电流	Ia	1
1	B相电流	Ib	2
1	C 相电流	Ic	3
1	I 母 A 相电压	Ua1	4
1	I 母 B 相电压	Ub1	5
1	I 母 C 相电压	Uc1	6
1	II 母 A 相电压	Ua2	7
1	II母B相电压	Ub2	8
1	II母C相电压	Uc2	9

开关量录波

公共地址	信号	INF	FUN
1	充电硬压板	201.	211
1	合后开入	202.	211
1	合闸位置	203.	211
1	跳闸位置	204.	211

1	总启动	205.	211
1	充电I段动作	206.	211
1	充电Ⅱ段动作	207.	211
1	过流 I 段动作	208.	211
1	过流Ⅱ段动作	209.	211
1	过流Ⅲ段动作	210.	211
1	零流I段动作	211.	211
1	零流Ⅱ段动作	212.	211
1	零流Ⅲ段动作	213.	211

8. 总召唤信息

ASDU_1的INF: 所有INF

ASDU_41的INF: 162~190 (注意: ASDU_41的INF在总召唤时改成对应的ASDU_40上送)